Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
4.
J Am Coll Cardiol ; 83(15): 1386-1398, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38599715

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential. OBJECTIVES: The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment. METHODS: DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks. The primary endpoint was change from baseline in urine osmolyte concentration. Secondary endpoints included changes in copeptin levels and solute free water clearance. RESULTS: Thirty-three randomized, sodium-glucose cotransporter 2 inhibitor-naïve participants completed the study, 29 of whom (placebo: n = 14; dapagliflozin: n = 15) provided accurate 24-hour urine collections (mean age 59 ± 14 years; left ventricular ejection fraction 31% ± 9%). Dapagliflozin treatment led to an isolated increase in urine glucose excretion by 3.3 mmol/kg/d (95% CI: 2.51-4.04; P < 0.0001) within 48 hours (early) which persisted after 4 weeks (late; 2.7 mmol/kg/d [95% CI: 1.98-3.51]; P < 0.0001). Dapagliflozin treatment increased serum copeptin early (5.5 pmol/L [95% CI: 0.45-10.5]; P < 0.05) and late (7.8 pmol/L [95% CI: 2.77-12.81]; P < 0.01), leading to proportional reductions in free water clearance (early: -9.1 mL/kg/d [95% CI: -14 to -4.12; P < 0.001]; late: -11.0 mL/kg/d [95% CI: -15.94 to -6.07; P < 0.0001]) and elevated urine concentrations (late: 134 mmol/L [95% CI: 39.28-229.12]; P < 0.01). Therefore, urine volume did not significantly increase with dapagliflozin (mean difference early: 2.8 mL/kg/d [95% CI: -1.97 to 7.48; P = 0.25]; mean difference late: 0.9 mL/kg/d [95% CI: -3.83 to 5.62]; P = 0.70). CONCLUSIONS: Physiological-adaptive water conservation eliminated the expected osmotic diuretic potential of dapagliflozin and thereby prevented a glucose-driven increase in urine volume of approximately 10 mL/kg/d · 75 kg = 750 mL/kg/d. (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment [DAPA-Shuttle1]; NCT04080518).


Assuntos
Compostos Benzidrílicos , Conservação dos Recursos Hídricos , Diabetes Mellitus Tipo 2 , Glucosídeos , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Pessoa de Meia-Idade , Idoso , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Diabetes Mellitus Tipo 2/complicações , Volume Sistólico , Transportador 2 de Glucose-Sódio , Diuréticos Osmóticos/farmacologia , Diuréticos Osmóticos/uso terapêutico , Função Ventricular Esquerda , Glucose , Diurese , Sódio , Água/farmacologia
6.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602847

RESUMO

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Nefropatias , MicroRNAs , Neoplasias , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Feminino , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estado Pré-Diabético/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Rim , Glucose/farmacologia , MicroRNAs/farmacologia , Sódio
7.
Ned Tijdschr Geneeskd ; 1682024 Apr 11.
Artigo em Holandês | MEDLINE | ID: mdl-38602004

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have gained prominence in the treatment of diabetes mellitus type 2, heart failure, and chronic kidney disease. However, concerns arise for frail older adults, given their underrepresentation in trials and heightened susceptibility to adverse drug events. This review summarizes the clinical effects of SGLT2 inhibitors in older adults with frailty. SGLT2 inhibitors seem to exhibit consistent cardiovascular benefits irrespective of age. As such, these drugs can be beneficial for older adults with 'cardiovascular frailty': in other words, cardiovascular multimorbidity. However, in the current data there is a lack of focus on the broader definition of frailty, which also includes functional status and self-dependence. Also, some research suggest that adverse events, such as volume depletion and genitourinary infections, are more common in the frail older population. Therefore, until more data is available, SGLT2 inhibitors should be prescribed with caution in older adults living with frailty.


Assuntos
Diabetes Mellitus Tipo 2 , Fragilidade , Inibidores do Transportador 2 de Sódio-Glicose , Idoso , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Idoso Fragilizado , Glucose/uso terapêutico , Hipoglicemiantes/efeitos adversos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
8.
Expert Opin Drug Metab Toxicol ; 20(4): 175-179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594810

RESUMO

INTRODUCTION: Over the last few years, there has been a substantial increase in the data available about the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in improving cardiovascular and renal outcomes in patients with type 2 diabetes (T2D). Very little new information is available for the other groups of glucose-lowering drugs. AREAS COVERED: This brief report summarizes the recent information about the respective benefits of the two newer groups of glucose-lowering drugs and the effects on cardiovascular risk factors that may be involved in these benefits. The articles reviewed were identified by a Medline search. EXPERT OPINION: Recent guidelines recommend SGLT2 inhibitors or GLP-1 RAs with proven cardiovascular disease benefits as potential first line treatment for patients with T2D and established atherosclerotic cardiovascular disease (ASCVD) or those with high risk of ASCVD or with chronic kidney disease or heart failure. Both groups of drugs have been shown to reduce major adverse cardiovascular events, but the mechanisms vary between them. SGLT2 inhibitors are preferred for the treatment and prevention of heart failure and chronic kidney disease, whereas GLP-1 RAs are more effective in reducing body weight and improving glycemic control in patients with T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Fatores de Risco de Doenças Cardíacas , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Guias de Prática Clínica como Assunto , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia
9.
PeerJ ; 12: e17055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500527

RESUMO

Background and Objectives: Recent studies have shown that the imbalance of intestinal flora is related to the occurrence and progression of diabetic nephropathy (DN) and can affect lipid metabolism. Sodium-dependent glucose transporters 2 (SGLT2) inhibitor and glucagon-like peptide-1 (GLP-1) receptor agonist are commonly used hypoglycemic drugs and have excellent renal safety. The purpose of this study was to compare the protective effects of empagliflozin and liraglutide on kidneys, lipid metabolism, and intestinal microbiota in diabetic mice. Methods: We established a mouse model of type two diabetes by feeding rats a high-fat diet (HFD) followed by an intraperitoneal injection of STZ. The mice were randomly divided into groups: normal control (NC), diabetic model (DM), liraglutide treatment (LirT), empagliflozin treatment (EmpT), and liraglutide combined with empagliflozin treatment (Emp&LirT) groups. Blood glucose, lipids, creatinine, and uric acid, as well as urinary nitrogen and albumin levels were measured. The renal tissues were subjected to HE, PAS and Masson's staining. These parameters were used to evaluate renal function and histopathological changes in mice. Mice feces were also collected for 16sRNA sequencing to analyze the composition of the intestinal flora. Results: All the indexes related to renal function were significantly improved after treatment with drugs. With respect to lipid metabolism, both drugs significantly decreased the serum triglyceride levels in diabetic mice, but the effect of liraglutide on reducing serum cholesterol was better than that of empagliflozin. However, empagliflozin had a better effect on the reduction of low-density lipoproteins (LDL). The two drugs had different effects on intestinal flora. At the phylum level, empagliflozin significantly reduced the ratio of Firmicutes to Bacteroidota, but no effect was seen with liraglutide. At the genus level, both of them decreased the number of Helicobacter and increased the number of Lactobacillus. Empagliflozin also significantly increased the abundance of Muribaculaceae, Muribaculum, Olsenella, and Odoribacter, while liraglutide significantly increased that of Ruminococcus. Conclusion: Liraglutide and empagliflozin were both able to improve diabetes-related renal injury. However, the ability of empagliflozin to reduce LDL was better compared to liraglutide. In addition, their effects on the intestine bacterial flora were significantly different.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Ratos , Animais , Liraglutida/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Metabolismo dos Lipídeos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
10.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488029

RESUMO

Cardiovascular diseases are caused by pathological cardiac remodeling, which involves fibrosis, inflammation and cell dysfunction. This includes autophagy, apoptosis, oxidative stress, mitochondrial dysfunction, changes in energy metabolism, angiogenesis and dysregulation of signaling pathways. These changes in heart structure and/or function ultimately result in heart failure. In an effort to prevent this, multiple cardiovascular outcome trials have demonstrated the cardiac benefits of sodium­glucose cotransporter type 2 inhibitors (SGLT2is), hypoglycemic drugs initially designed to treat type 2 diabetes mellitus. SGLT2is include empagliflozin and dapagliflozin, which are listed as guideline drugs in the 2021 European Guidelines for Heart Failure and the 2022 American Heart Association/American College of Cardiology/Heart Failure Society of America Guidelines for Heart Failure Management. In recent years, multiple studies using animal models have explored the mechanisms by which SGLT2is prevent cardiac remodeling. This article reviews the role of SGLT2is in cardiac remodeling induced by different etiologies to provide a guideline for further evaluation of the mechanisms underlying the inhibition of pathological cardiac remodeling by SGLT2is, as well as the development of novel drug targets.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Remodelação Ventricular , Hipoglicemiantes/farmacologia , Insuficiência Cardíaca/metabolismo
12.
Curr Probl Cardiol ; 49(5): 102524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492622

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Proteínas Quinases Ativadas por AMP/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
13.
Int J Biol Macromol ; 265(Pt 1): 130962, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503370

RESUMO

Combining a Sodium-Glucose-Cotransporter-2-inhibitor (SGLT2i) with metformin is recommended for managing hyperglycemia in patients with type 2 diabetes (T2D) who have cardio-renal complications. Our study aimed to investigate the metabolic effects of SGLT2i and metformin, both individually and synergistically. We treated leptin receptor-deficient (db/db) mice with these drugs for two weeks and conducted metabolite profiling, identifying 861 metabolites across kidney, liver, muscle, fat, and plasma. Using linear regression and mixed-effects models, we identified two SGLT2i-specific metabolites, X-12465 and 3-hydroxybutyric acid (3HBA), a ketone body, across all examined tissues. The levels of 3HBA were significantly higher under SGLT2i monotherapy compared to controls and were attenuated when combined with metformin. We observed similar modulatory effects on metabolites involved in protein catabolism (e.g., branched-chain amino acids) and gluconeogenesis. Moreover, combination therapy significantly raised pipecolate levels, which may enhance mTOR1 activity, while modulating GSK3, a common target of SGLT2i and 3HBA inhibition. The combination therapy also led to significant reductions in body weight and lactate levels, contrasted with monotherapies. Our findings advocate for the combined approach to better manage muscle loss, and the risks of DKA and lactic acidosis, presenting a more effective strategy for T2D treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Ácido 3-Hidroxibutírico , Ácido Láctico/uso terapêutico , Quinase 3 da Glicogênio Sintase/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
14.
Life Sci ; 345: 122594, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537900

RESUMO

A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.


Assuntos
Biopterina/análogos & derivados , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Biopterina/uso terapêutico , Inflamação , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
15.
Expert Opin Investig Drugs ; 33(4): 287-301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465470

RESUMO

INTRODUCTION: The evolution of treatment for diabetic nephropathy illustrates how basic biochemistry and physiology have led to new agents such as SGLT2 inhibitors and mineralocorticoid blockers. Conversely, clinical studies performed with these agents have suggested new concepts for investigational drug development. We reviewed currently available treatments for diabetic nephropathy and then analyzed early clinical trials of new agents to assess the potential for future treatment modalities. AREAS COVERED: We searched ClinicalTrials.gov for new agents under study for diabetic nephropathy in the past decade. Once we have identified investigation trials of new agents, we then used search engines and Pubmed.gov to find publications providing insight on these drugs. Current treatments have shown benefit in both cardiac and renal disease. In our review, we found 51 trials and 43 pharmaceuticals in a number of drug classes: mineralocorticoid blockers, anti-inflammatory, anti-fibrosis, nitric oxide stimulatory, and podocyte protection, and endothelin inhibitors. EXPERT OPINION: It is difficult to predict which early phase treatments will advance to confirmatory clinical trials. Current agents are thought to improve hemodynamic function. However, the coincident benefit of both myocardial function and the glomerulus argues for primary effects at the subcellular level, and we follow the evolution of agents which modify fundamental cellular processes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Mineralocorticoides/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
16.
Eur J Med Chem ; 269: 116343, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513341

RESUMO

Sodium-dependent glucose transporters 2 (SGLT2) inhibitors are a class of small-molecule drugs that have gained significant attention in recent years for their potential clinical applications in the treatment of type 2 diabetes mellitus (T2DM). These inhibitors function by obstructing the kidneys' ability to reabsorb glucose, resulting in a rise in the excretion of glucose in urine (UGE) and subsequently lowering blood glucose levels. Several SGLT2 inhibitors, such as Dapagliflozin, Canagliflozin, and Empagliflozin, have been approved by regulatory authorities and are currently available for clinical use. These inhibitors have shown notable enhancements in managing blood sugar levels, reducing body weight, and lowering blood pressure in individuals with T2DM. Additionally, they have exhibited potential advantages in decreasing the likelihood of cardiovascular incidents and renal complications among this group of patients. This review article focuses on the synthesis and clinical application of small-molecule SGLT2 inhibitors, which have provided a new therapeutic approach for the management of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glucose , Compostos Benzidrílicos/farmacologia , Sódio/uso terapêutico
17.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541121

RESUMO

Background and Objectives: Glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are cardioprotective drugs. We investigated their effects on left atrial function, a major determinant of cardiac diastolic dysfunction in type 2 diabetes mellitus. We also explored the association of changes in arterial stiffness with those of the LA strain after treatment. Materials and Methods: A total of 200 patients (59.5 ± 9.1 year old, 151 male) with type 2 diabetes mellitus treated with metformin were randomized to insulin (n = 50 served as controls), liraglutide (n = 50), empagliflozin (n = 50) or their combination (liraglutide + empagliflozin) (n = 50). We measured at baseline and 6 months post-treatment: (a) left atrial and global left ventricular longitudinal strain by speckle tracking echocardiography; (b) pulse wave velocity (PWV) and central systolic blood pressure. Results: At baseline, there was a correlation of the LA reservoir strain with PWV (r = -0.209, p = 0.008), central SBP (r = -0.151, p = 0.030), EF (r = 0.214, p = 0.004) and GLS (r = -0.279, p = 0.009). The LA reservoir change 6 months post-treatment was correlated with the PWV change in all groups (r = -0.242, p = 0.028). The LA reservoir change 6 months post-treatment was correlated with the GLS change in all groups (r = -0.322, p = 0.004). Six months after intervention, patients treated with liraglutide, empagliflozin and their combination improved the left atrial reservoir strain (GLP1RA 30.7 ± 9.3 vs. 33.9 ± 9.7%, p = 0.011, SGLT2i 30 ± 8.3 vs. 32.3 ± 7.3%, p = 0.04, GLP1&SGLT2i 29.1 ± 8.7 vs. 31.3 ± 8.2, p = 0.007) compared to those treated with insulin (33 ± 8.3% vs. 32.8 ± 7.4, p = 0.829). Also, patients treated with liraglutide and the combination liraglutide and empagliflozin had improved left atrial conduction strain (p < 0.05). Empagliflozin or the combination liraglutide and empagliflozin showed a greater decrease of PWV and central and brachial systolic blood pressure than insulin or GLP-1RA. (p < 0.05). Conclusions: Impaired aortic elastic properties are associated with a decreased LA strain in type 2 diabetics. Treatment with liraglutide, empagliflozin and their combination for 6 months showed a greater improvement of left atrial function compared to insulin treatment in parallel with the improvement of arterial and myocardial functions.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Cardiopatias , Insulinas , Inibidores do Transportador 2 de Sódio-Glicose , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulinas/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Análise de Onda de Pulso , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Função Ventricular Esquerda/fisiologia , Feminino
18.
JCI Insight ; 9(6)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516890

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Ratos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Glucose , Ratos Wistar , Insuficiência Renal Crônica/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico
19.
J Basic Clin Physiol Pharmacol ; 35(1-2): 53-60, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484469

RESUMO

OBJECTIVES: Empagliflozin, a sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, are commonly recognized for their cardiovascular benefits in individuals with type 2 diabetes (T2D). In prior studies, we have demonstrated that both drugs, alone or in combination, were able to protect cardiomyocytes from injury induced by diabetes. Mechanistic investigations also suggested that the cardioprotective effect may be independent of diabetes In this study, we utilized a hypoxia-reoxygenation (H/R) model to investigate the cardiovascular benefits of SGLT2 inhibitor empagliflozin and GLP-1 receptor (GLP-1R) agonist liraglutide, both alone and in combination, in the absence of T2D. Our hypothesis was that empagliflozin and liraglutide, either individually or in combination, would demonstrate cardioprotective properties against H/R-induced injury, with an additive and/or synergistic effect anticipated from combination therapy. METHODS: In this study, the cardiac muscle cell line, HL-1 cells, were treated with vehicle, empagliflozin, liraglutide, or a combination of the two drugs. The cells were then subjected to a hypoxia-reoxygenation (H/R) protocol, consisting of 1 h of hypoxia followed by 24 h of reoxygenation. The effects of the treatments on cytotoxicity, oxidative stress, endothelial nitric oxide synthase (eNOS) activity, phospho-protein kinase C (PKC) beta and phospho-eNOS (Thr495) expression were subsequently evaluated at the end of the treatments. RESULTS: We found that H/R increased cytotoxicity and reduces eNOS activity, empagliflozin, liraglutide or combination treatment attenuated some or all of these effects with the combination therapy showing the greatest improvement. CONCLUSIONS: Empagliflozin, liraglutide or combination of these two have cardioprotective effect regardless of diabetes. Cardioprotective effects of SGLT2 inhibitor and GLP-1R agonist is additive and synergistic.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Liraglutida/farmacologia , Liraglutida/metabolismo , Miócitos Cardíacos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
20.
Expert Opin Investig Drugs ; 33(4): 319-334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429874

RESUMO

INTRODUCTION: Chronic kidney disease (CKD) is widespread throughout the world, with a high social and health impact. It is considered a 'silent killer' for its sudden onset without symptoms in the early stages of the disease. The main goal of nephrologists is to slow the progression of kidney disease and treat the associated symptoms with a range of new medications. AREAS COVERED: The aim of this systematic review is to analyze the new investigational drugs for the treatment of chronic renal failure. Data were obtained from the available scientific literature and from the ClinicalTrials.gov website. EXPERT OPINION: Among the drugs currently being researched, SGLT2 inhibitors appear to be the most promising drugs for the treatment of CKD, has they have slower progression of CKD and protection of cardiorenal function. An important role in the future of CKD treatment is played by autologous cell-therapy, which appears to be a new frontier in the treatment of CKD. Other therapeutic strategies are currently being investigated and have been shown to slow the progression of CKD. However, further studies are needed to determine whether these approaches may offer benefits in slowing the progression of CKD in the near future.


Assuntos
Diabetes Mellitus Tipo 2 , Falência Renal Crônica , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Drogas em Investigação/efeitos adversos , Falência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...